Bab 1: Induksi Matematika
Pertanyaan 1
Diberikan sebuah deret
S
n
=
1
1
⋅
2
+
1
2
⋅
3
+
1
3
⋅
4
+
⋯
+
1
n
(
n
+
1
)
S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)}
S
n
=
1
⋅
2
1
+
2
⋅
3
1
+
3
⋅
4
1
+
⋯
+
n
(
n
+
1
)
1
. Dengan mengamati beberapa suku pertama,
S
1
=
1
2
S_1 = \frac{1}{2}
S
1
=
2
1
,
S
2
=
1
2
+
1
6
=
3
+
1
6
=
4
6
=
2
3
S_2 = \frac{1}{2} + \frac{1}{6} = \frac{3+1}{6} = \frac{4}{6} = \frac{2}{3}
S
2
=
2
1
+
6
1
=
6
3
+
1
=
6
4
=
3
2
,
S
3
=
2
3
+
1
12
=
8
+
1
12
=
9
12
=
3
4
S_3 = \frac{2}{3} + \frac{1}{12} = \frac{8+1}{12} = \frac{9}{12} = \frac{3}{4}
S
3
=
3
2
+
12
1
=
12
8
+
1
=
12
9
=
4
3
. Rumus umum untuk
S
n
S_n
S
n
yang dapat dibuktikan dengan induksi matematika adalah:
A
S
n
=
n
n
+
1
S_n = \frac{n}{n+1}
S
n
=
n
+
1
n
B
S
n
=
n
+
1
n
+
2
S_n = \frac{n+1}{n+2}
S
n
=
n
+
2
n
+
1
C
S
n
=
1
n
+
1
S_n = \frac{1}{n+1}
S
n
=
n
+
1
1
D
S
n
=
n
2
S_n = n^2
S
n
=
n
2
E
S
n
=
n
(
n
+
1
)
2
S_n = \frac{n(n+1)}{2}
S
n
=
2
n
(
n
+
1
)